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From Vision to Motion: Translating Large-Scale
Knowledge for Data-Scarce IMU Applications

Hyungjun Yoon ", Hyeongheon Cha

Abstract—Pre-training representations acquired via self-
supervised learning could achieve high accuracy on even tasks
with small training data. Unlike in vision and natural language
processing domains, pre-training for IMU-based applications is
challenging, as there are few public datasets with sufficient size
and diversity to learn generalizable representations. To overcome
this problem, we propose IMG2IMU that adapts pre-trained
representation from large-scale images to diverse IMU sensing
tasks. We convert the sensor data into visually interpretable
spectrograms for the model to utilize the knowledge gained from
vision. We further present a sensor-aware pre-training method
for images that enables models to acquire particularly impactful
knowledge for IMU sensing applications. This involves using
contrastive learning on our augmentation set customized for the
properties of sensor data. Our evaluation with four different IMU
sensing tasks shows that IMG2IMU outperforms the baselines
pre-trained on sensor data by an average of 9.6%p F1-score,
illustrating that vision knowledge can be usefully incorporated
into IMU sensing applications where only limited training data is
available.

Index Terms—Mobile sensing, deep learning, self-supervised
learning, contrastive learning.

I. INTRODUCTION

OBILE sensing powered by deep learning has enabled
M various ubiquitous applications in everyday life. Motion
sensing with inertial measurement units (IMUs), such as ac-
celerometers, is particularly promising due to its broad applica-
bility, including activity recognition [1], transportation [2], agri-
culture [3], and healthcare [4]. However, deep learning models
for IMU sensing rely heavily on task-specific datasets, where
the amount and diversity of labeled training data limit model
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performance. Collecting large-scale IMU data is challenging due
to cost, device and user heterogeneity, and privacy concerns.

Recent research has focused on addressing label scarcity in
deep learning by leveraging representation learning. A com-
mon strategy is self-supervised learning (SSL), which pre-trains
models using large amounts of unlabeled data to capture gen-
eral data characteristics through predefined tasks [5]. SSL has
shown remarkable performance in domains with large public
datasets. For example, in natural language processing, models
such as Llama [6] and the GPT series [7] are pre-trained on
massive Internet text corpora and serve as foundation models
for various tasks. Similarly, in computer vision, pre-training
on large-scale datasets such as ImageNet [8], JFT-3B [9], and
LAION-5B [10] has led to state-of-the-art performance across
arange of tasks [11].

In IMU sensing, pre-training with unlabeled sensor data can
enhance downstream performance [12]. Nevertheless, unlike
images and text that benefit from large-scale, diverse public
datasets, existing IMU datasets [13], [14], [15] primarily focus
on Human Activity Recognition (HAR) and lack diversity. For
instance, Capture-24 [13] dataset collects data exclusively from
wrist-worn devices at a single sampling rate, lacking diverse
sensor types, placements, and signal processing methods. As a
result, models pre-trained on such datasets face generalizability
challenges, unable to adapt to tasks with varying targets, sensor
positions, subjects, or sampling frequencies (see Section V-B1).

Motivated by this challenge, we leverage external knowl-
edge beyond sensor data to tackle IMU sensing tasks. By
transforming IMU data into 2D visual representations such as
spectrograms [16], [17], patterns emerge that are visually inter-
pretable through attributes such as brightness, shapes, and spatial
structures. These attributes align naturally with the capabilities
of vision models pre-trained on large-scale image datasets (as
detailed in Section II).

Building on this intuition, we present IMG2IMU that trans-
lates the knowledge from pre-trained vision models to IMU sens-
ing tasks. IMG2IMU transforms IMU data into spectrograms,
mapping the three sensor axes to RGB channels, following
established practices for visualizing sensor data [16], [17]. By
fine-tuning pre-trained vision models with the spectrograms,
IMG2IMU effectively handles IMU sensing tasks with scarce
labeled data.

However, directly applying vision models introduces a
domain gap. Unlike images, which are often invariant to
transformations like rotations or flips, spectrograms en-
code spatiotemporal information and depend on the precise
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Fig. 1. Spectrogram images converted from triaxial IMU sensor data of human
activity recognition and roadway classification tasks.

orientation of their axes—time and frequency—making such
transformations disruptive. To bridge this gap, IMG2IMU in-
corporates a tailored pre-training method with sensor-aware
augmentations that account for IMU-specific properties. We
define four augmentations—7TranslateX, PermuteX, Hue, and
Jitter—to generate positive views for contrastive learning, en-
suring the model learns robust, spectrogram-specific features
during pre-training. We evaluate IMG2IMU on four diverse
IMU sensing tasks and demonstrate its effectiveness in scenarios
with limited training data. IMG2IMU consistently outperforms
existing self-supervised methods, achieving a 9.6%p improve-
ment in mean F1-score. These results underscore the potential
of transferring knowledge from large-scale image datasets to
enhance IMU sensing performance. The key contributions of
this work are as follows:

® We propose IMG2IMU that leverages vision knowledge
pre-trained on large-scale image datasets and translates it
into IMU sensing applications on limited data.

e We design contrastive learning using four sensor-aware
image augmentations that bridge the domain gap between
image-based pre-training and IMU sensing tasks, enabling
effective pre-training with images.

e We analyze the contribution of each augmentation to im-
proving robustness against IMU-specific variations.

® We demonstrate through experiments that IMG2IMU en-
hances performance across diverse IMU sensing tasks in
data-scarce scenarios.

II. BACKGROUND AND MOTIVATION

A. Why Visualization Works: Interpretable Features

Data scientists often transform IMU data into visual repre-
sentations (e.g., spectrograms) to improve interpretability [16],
[18]. Visual representations are effective as they make latent
features (e.g., frequency, amplitude, and temporal variation)
perceptible through generally recognizable attributes, such as
brightness, patterns, or colors. This approach minimizes the need
for extensive domain knowledge of raw sensor data, enabling
both human analysts [19] and machine learning models [17] to
extract meaningful insights.

For example, in Fig. 1, the spectrograms of a human activity
recognition (HAR) [1] task distinguish jogging and walking
based on distinct patterns. Jogging exhibits a wider spacing
between horizontal stripes, reflecting a higher motion frequency.
Similarly, spectrograms from a roadway classification task [2]
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highlight differences in brightness, where darker plots corre-
spond to dirt roads with irregular vibrations, in contrast to
smoother asphalt surfaces.

This insight motivates our approach: complex sensing tasks
can be solved by exploiting fundamental visual interpretation
abilities, such as distinguishing colors or patterns, even without
deep knowledge about the specific sensing task. In light of
this intuition, we explore the potential to utilize the knowledge
learned from vision to enhance IMU sensing tasks.

B. From Scarce Sensor Data to Abundant Image Data

Publicly available datasets for IMU sensing typically focus on
specific tasks, such as daily activities [1], gait detection [4], or
sports [20]. Although these datasets are valuable, they are often
limited in scale and diversity. Larger-scale efforts [15], such as
Capture-24 [13] and U.K.-Biobank [14], are restricted to specific
conditions, such as wrist-worn devices measuring general daily
activities. These datasets lack variety in sensor locations and
tasks, leading to suboptimal generalization when applied to other
sensing scenarios, as we demonstrate in Section V-B1.

In contrast, the field of computer vision has dramatically
benefited from the availability of abundant data. Starting with
ImageNet [8], which contains 1.2 million images in 1,000
classes, vision researchers have significantly scaled the size
of the dataset. Examples include JFT-3B [9], which contains
billions of images, and LAION-5B [10], a dataset of 5.85 billion
images. These large-scale datasets provide a rich source of
pre-trained knowledge, enabling vision models to generalize
across diverse applications [21].

Vision models pre-trained on large-scale datasets excel at
extracting foundational features, such as brightness, texture, and
patterns [22], and have been successfully applied to domains
beyond natural images (see Section III-C). Motivated by their
success, we explore leveraging vision models trained on image
datasets to address IMU sensing tasks.

C. Challenges in Bridging Vision and Sensing

While pre-trained vision models offer significant opportuni-
ties for sensor data analysis, applying them directly to sensor
spectrograms introduces unique challenges. Unlike standard
images, spectrograms encode critical information along the
time and frequency axes, where orientation reflects the scale
of values. Transformations such as rotation and flipping, which
preserve labels for standard images, disrupt this information in
spectrograms: rotation swaps the axes while flipping reverses
axis values, as shown in Fig. 2. These distortions lead to misin-
terpretation and degraded performance when vision models are
naively transferred to IMU sensing tasks.

To address this, we propose IMG2IMU, which adapts vision
models to sensor data through task-specific augmentations and
fine-tuning. This approach ensures that vision models effectively
align with spectrogram-specific properties, allowing accurate
interpretation of sensor data.
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Fig.2. Flipping and rotating an image from ImageNet (top) and a spectrogram
image (bottom). Deformations misinterpret the spectrograms by swapping the
time-frequency axes and inverting the values along an axis.

III. RELATED WORK

A. Self-Supervised Learning for Sensing

Prior works [23], [24] applied self-supervised learning using
a Multi-task transformation prediction for human activity recog-
nition (HAR). Using Multi-task learning, the original data is aug-
mented with a random augmentation, and the network is trained
to predict the type of augmentation applied. SelfHAR [25]
integrated the ideas of multi-task learning and teacher-student
self-learning to create an effective semi-supervised learning
framework.

Contrastive learning is another effective method where
MoCo [26] and SimCLR [11], [27] are representative frame-
works. They have been redesigned for HAR as MoCoHAR [28],
SimCLR for HAR [29], and CSSHAR [30]. Another study [31],
[32] adopted Contrastive Predictive Coding (CPC), which trains
an encoder to predict the next sequence chunk based on previous
sequences.

Masked region reconstruction [15], [33] is also adopted as a
self-supervised learning strategy for sensory data. Haresaumu-
dram, et al. [12] conducted an assessment of seven state-of-
the-art self-supervised learning methods applied to HAR (e.g.
SimSiam [34]) in addition to previously discussed methods.

While these studies showed their effectiveness for HAR
tasks, IMU sensing applications include diverse target tasks [2]
and subjects [3]. As publically available large-scale sensor
datasets [13], [24] are centered on HAR, the pre-trained model
for sensing has poor generalizability. IMG2IMU resolve this
challenge by interpreting IMU sensor data as images and utiliz-
ing models pre-trained from a larger scale of vision data.

B. Use of Cross-Modal Data for Sensing

Prior studies have explored cross-modal data to enhance self-
supervised learning for IMU sensing. ColloSSL [35] and CO-
COA [36] used cross-modal sensor data as positive view pairs for
contrastive learning, while Vision2Sensor [37] employed vision-
based activity recognition to generate labels for IMU data.
However, these methods depend on synchronization between
modalities, limiting their applicability to asynchronous settings.
In contrast, IMG2IMU eliminates the need for synchronization
by independently performing pre-training and fine-tuning.

IMU2Doppler [38] employed IMU data to train models for
mmWave radar sensing. While this approach highlights the

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 9, SEPTEMBER 2025

potential of leveraging IMU data for cross-modal applications,
IMG2IMU addresses the scarcity of IMU sensor data by utilizing
images for pre-training. Similarly, Tong et al. [39] used videos
to construct semantic spaces for IMU-based activity recogni-
tion, focusing on zero-shot learning. Unlike IMG2IMU, their
method specifically targets semantic embedding construction for
HAR and does not explore generalizable pre-training strategies.
IMUTube [40] and IMUGPT 2.0 [41] tackled data scarcity by
generating virtual IMU data, using videos and textual descrip-
tions, respectively. However, both approaches struggle to fully
replicate real-world sensor noise and differ from IMG2IMU’s
focus on leveraging pre-trained vision models and addressing
data scarcity through tailored pre-training strategies.

C. Using Pre-Trained Models From Images

Pre-trained models on large-scale image datasets, such as
ImageNet [8] and JFT-3B [9], are highly effective for transfer
learning [42]. These models have demonstrated exceptional
performance across diverse tasks [11], including object detec-
tion [43] and semantic segmentation [44].

The versatility of image-based pre-trained models extends
to diverse domains. For instance, Azizi et al. [45] employed
ImageNet-pre-trained models for medical image analysis, in-
cluding dermatology classification [46] and chest X-ray diag-
nosis [47]. Additionally, pre-trained vision models have been
applied to sound classification [48] by converting audio data
into mel-spectrograms. Building upon these, we designed pre-
training methods tailored to IMU spectrograms.

Recent advancements in Vision-Language Models (VLMs)
(e.g., using BLIP [49] and SAM [50]) further highlight the
power of vision models. By mapping visual representations
on semantic space, VLMs have achieved state-of-the-art per-
formance in data-scarce scenarios [51]. For instance, VLMs
have been used to classify sensor data by associating visual
graphs with textual descriptions [52]. However, the large size of
VLMs limits their applicability in resource-constrained settings.
Our approach leverages lightweight networks and optimized
pre-training strategies to effectively adapt vision-based models
for sensor data.

Iv. IMG2IMU

To enhance the performance of IMU sensing tasks when a
fair amount of training data is difficult to obtain, we propose to
utilize large-scale public image datasets to pre-train a model.
Fig. 3 overviews our IMG2IMU that consists of two main
stages: (i) pre-training a model using large-scale image datasets
to learn sensor-aware knowledge through self-supervised con-
trastive learning, and (ii) transferring the learned knowledge
from the vision model to downstream IMU sensing tasks that
use 2D-transformed sensor data.

A. Converting Triaxial IMU Sensing Data to Images

Spectrograms display the intensity of frequency features
along the time axis. Existing works [16], [17], [18] showed that
the frequency-based visualization effectively represents features
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Fig. 3.

Overview of IMG2IMU. (1) Pre-training is performed with the large-scale image dataset collected from the public domain, using contrastive learning

with sensor-aware augmentations. (2) The pre-trained model is transferred to IMU sensing tasks using 2D-transformed triaxial IMU sensor data as input.

for various IMU sensing tasks. Building on this foundation, we
set spectrograms as our primary visualization method, expecting
that the ability to interpret visual features from images can also
be applied to spectrograms.

Our research scope is on applications that utilize triaxial IMU
data, reflecting the common practice of measuring motion across
the X, y, and z axes. To harness data in all axes for no information
loss, we map the x, y, and z axes to the RGB channels to generate
a single image, which was shown to be effective in IMU sensing
tasks [16], [18]. This method ensures that the intensity of motion,
measured as the root mean square of the triaxial values, is
reflected in the brightness, derived from the aggregation of RGB
values. It also differentiates each axis’s contribution through the
prevalence of RGB hues.

We acknowledge several issues in the mapping strategy. For
instance, an effective augmentation method for sensor data is
rotation, i.e., switching the x, y, and z axes, which is the same
as changing the image’s RGB color tones (i.e., Hue). However,
these RBG color tone changes would not be an ideal image
augmentation method; for example, replacing the blue sky with
a green sky does not make sense. This indicates that following the
standard augmentation rules in the vision domain might fail to
transfer knowledge to IMU sensing tasks effectively. To handle
this mismatch between sensor and image data, we propose a
sensor-aware augmentation strategy that effectively accounts
for such variations, detailed in the subsequent sections.

Fig. 4 illustrates the generation process of 3-channel spectro-
grams. Spectrograms are created for each axis and mapped to
the corresponding RGB color channels. To standardize inputs,
we resize all spectrograms to match the image size used for
pre-training. This resizing preserves the integrity of spectrogram
characteristics, provided the time window and frequency range
are maintained. Next, we normalize the spectrograms using

1. Conversion to spectrogram

2. Map to RGB channel

3 WWMWW

X

5 [ Wl

2 ‘ [ | 3. Generate a

& MW ﬁ 3-channel image
Fig. 4. Generation of a 3-channel image from triaxial IMU sensing data.

the mean and standard deviation of the pre-training images
to maintain consistency between the input distributions. Key
spectrogram parameters, such as the number of points in the
Fast Fourier Transform (nff), are treated as hyperparameters
and tuned to optimize performance.

B. Sensor-Aware Pre-Training Using Image Dataset

1) Contrastive Self-Supervised Learning: To address the
unique challenges presented by the distinct characteristics of
spectrograms compared with conventional images (Fig. 2),
IMG2IMU employs contrastive learning [26], [27] for pre-
training. We use contrastive learning for its exceptional perfor-
mance in training vast unlabeled data [11]. More importantly, it
has the capability to selectively train knowledge that is valuable
for IMU sensing while avoiding incompatible information from
public image datasets.

Contrastive learning generates a pair of augmented views
from a single source, ensuring that these views retain essential
mutual information about their inherent characteristics. The goal
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during training is to enhance the model’s ability to identify
and align these augmented pairs while distinguishing them
from unrelated examples. The model is trained to capture the
intrinsic features maintained across augmentations. We focus
on the strategic use of augmentations in contrastive learning; by
selecting appropriate augmentations, we can direct the model to
learn particular feature insights. For example, scaling augmen-
tation teaches the model to recognize an object with different
sizes as similar entities. In contrast, color augmentation trains
it to understand that objects are similar with varying colors.
In IMG2IMU, we define tailored augmentations designed for
IMU sensing tasks, empowering IMG2IMU to acquire useful
knowledge, detailed in Section IV-B2.

IMG2IMU implements contrastive learning based on
MoCo [26] as it uses a much smaller batch size while achieving
comparable performance compared with other baselines such
as SimCLR [27]. This efficiency allows operating in resource-
constrained environments, resulting in greater scalability. MoCo
maintains two encoders; the query encoder and the key encoder.
The query encoder generates an embedding named ¢ from a
data sample. It generates embedding named positive key, k.,
from the positive pair of the sample, and negative keys k; (i =
0,1,2,..., K) that are encoded from the other data points. The
training objective is to make the query ¢ distinguish the positive
key (k) from the other negative keys (k;). The query encoder
is trained with InfoNCE loss [53] during learning. We calculate
the InfoNCE loss as follows:

exp(q - ky/7)
Sigexp (g-ki/T)’
where 7 indicates the temperature parameter for controlling the
concentration level. MoCo maintains a large set of negative keys
by constructing a dictionary that stores data of multiple encoded
keys. A moving average is used to update the key encoder based
on the weights trained from the query encoder, which enables the
dictionary to be dynamic. After contrastive learning is performed
on the training image data, the parameters of the query encoder
network are used as pre-trained weights for the downstream IMU
sensing task.

2) IMU Sensor-Aware Augmentations: Data augmentation
preserves the key property of data and generates a different view
of the same data. For instance, images are often rotated, flipped,
and scaled to change their viewpoint while maintaining color
and relative shapes. Using augmentations in contrastive learning,
the model learns what mutual information to use to cognize the
original and augmented data as the same. Augmentation types
should be carefully selected based on what knowledge the model
aims to acquire. The usefulness of different augmentations varies
in different downstream tasks.

Our downstream tasks take spectrograms derived from triaxial
IMU sensing data as the input. Compared with the images from
public datasets used for pre-training, spectrograms show unique
properties. Spectrograms have directional properties along the
axes; thus, augmentations such as flipping images would damage
the downstream performance as they reverse the time or fre-
quency values. Similarly, rotating images would distort nature
as each axis has fixed values of time and frequency. Further, the

Ly = —log

ey
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PermuteX

TranslateX

Fig. 5. Sensor-aware augmentations in IMG2IMU.

RGB channels in our spectrograms indicate the triaxial axes of
X, y, and z, thus we must be aware of the difference in the channel
information. These are the important domain gap between public
image datasets and sensor data, and we thoughtfully select the
augmentations for IMG2IMU to bridge this gap.

We identify the important properties of sensor data that must
be preserved and define augmentations to assist the model in
learning useful knowledge for downstream IMU sensing tasks.
Fig. 5 visualizes the selected image augmentations.

® TranslateX randomly shifts image data on the x-axis. Sen-
sor data are segmented into fixed-size time windows for
processing. During this stage, the window can be started at
any temporal point from the same context. As the key fea-
tures of data are within the time window, the classification
remains the same regardless of whether a window is shifted
left or right over the time axis. Based on this property, we
expect that TranslateX benefits sensing tasks as the x-axis
represents time in the spectrogram.

® PermuteX splits data over the x-axis into multiple chunks
and randomly perturbs the chunks. For time-series data,
permutation is known to preserve local temporal features
while distorting the global structure to produce a different
view for the same label [54]. We apply PermuteX exclu-
sively to the x-axis to introduce variability in the temporal
dimension while preserving the frequency-domain features
along the y-axis. By keeping the y-axis unchanged, Permu-
teX maintains the frequency-specific patterns.

® Hue alters the color tone of image data while preserving
the overall brightness and contrast. The values between
RGB channels are often interchanged with Hue. In IMU
sensing, x, y, and z channels are interchangeable based
on the rotation of the sensor. Reflecting the property,
rotation is commonly used as an augmentation for triaxial
sensors [54]. Our approach maps the sensor data’s x, y,
and z channels to the RGB channel of an image. By
applying Hue, we replicate the effect of interchangeability
between the three channels in the triaxial IMU sensing
data.

e Jitter adjusts the color by adding random noise for each
pixel in the image. We implemented the augmentation by
injecting uniform noise centered on zero to preserve the
average color information of the image. Jitfer mimics the
augmentation method of adding random noise to sensor
data. Sensors can be affected by random noise, which in
turn can affect the spectrogram by making some regions
brighter or darker. We adopt Jitter to make the model robust
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TABLE 1
THE IMPACT OF EACH SENSOR-AWARE IMAGE AUGMENTATION ON IMPROVING ROBUSTNESS AGAINST SENSORY PERTURBATIONS APPLIED TO THE WISDM
DATASET [1]

Augmentations | original time-shifted masked rotated noised
T P H J F1 F1 drop F1 drop F1 drop F1 drop
o v v 0.754 0.545 —27.75% 0.534 —29.16% 0.695 —7.83% 0.580 —23.10%
X v v 0.686 0.434 —36.78% 0.468 —31.83% 0.684 —0.34% 0.627 —8.68%
o X v/ 0.687 0.435 —36.66% 0.387 —43.76% 0.661 —3.90% 0.533 —22.48%
2 S 0.704 0.559 —20.68% 0.548 —22.24% 0.539 —23.45% 0.622 —11.59%
2 ¢ 0.749 0.540 —27.87% 0.502 —33.02% 0.695 —7.19% 0.562 —24.91%

T, P, H, and J denotes TranslateX, PermuteX, Hue, and Jitter respectively. We report the drop of the F1-score in each sensory augmentation compared with the original data. The largest drop shown in F1-score

(£1%) is in bold.

masked noised rotated

Wl s

time-shifted

WA

Fig. 6. Four versions of synthetic data from the WISDM [1] dataset to
replicate sensor data augmentations: (i) time-shifted, (ii) masked, (iii) rotated,
and (iv) noised. Both the sensor data and the resulting spectrograms are shown.

to the noise that could be included in sensor data from
uncontrolled environments.

3) Effect of Sensor-Aware Augmentations: We propose four
sensor-aware image augmentations: TranslateX, PermuteX, Hue,
and Jitter. To assess their impact on improving the interpretation
of visualized IMU data when used in pre-training with images,
we conducted an ablation study.

First, we prepared five pre-trained vision models. The baseline
model utilized all four sensor-aware image augmentations to
generate positive views for contrastive learning. Additionally,
we created four ablation settings, each omitting one specific
augmentation while using the remaining three. Thus, we exam-
ine the impact of excluding a particular augmentation on model
performance. All models were pre-trained on the ImageNet
dataset [8] under identical conditions.

To assess robustness, we curated four test datasets with dis-
tinct variations, reflecting natural sensor data variability. Using
the WISDM dataset [1], a widely used benchmark for human
activity recognition, we generated synthetic datasets by applying
sensory augmentations [54]: (i) time-shifted data, created by
shifting sensor readings left or right; (ii) masked data, simulat-
ing sensor disconnections by distorting global structures while
preserving local temporal features; (iii) rofated data, generated
through linear transformations that interchange axis values,
and (iv) noised data, augmented with uniform random noise.
Fig. 6 illustrates these augmented datasets and their resulting
spectrograms.

Finally, we compared the performance of the models across
these datasets. If excluding a particular image augmentation
leads to a significant performance drop on a dataset with a
corresponding sensory augmentation, this suggests that the ex-
cluded image augmentation plays a crucial role in improving the
model’s robustness to the sensory augmentation.

Table I presents the results for each pre-trained model across
different augmented sensor datasets. We evaluated the F1-score
for each model applied to each dataset. Note the performance
drops when different sensory augmentations are applied com-
pared to the original dataset. The pre-trained model with our four
sensor-aware augmentations performed the best for all datasets.
When we excluded each augmentation, performance dropped to
different degrees.

We examined how the absence of each sensor-aware image
augmentation influenced robustness. On time-shifted data, the
models trained without TranslateX and PermuteX showed the
largest drops, indicating that these augmentations help preserve
local temporal structures. Similarly, removing PermuteX sig-
nificantly impacted the model’s performance on masked data,
which is designed to distort the global features. It verifies that
PermuteX enhances local feature extraction. For rotated data,
eliminating Hue weakened robustness to rotation, resulting in
a substantial performance drop. Lastly, on noisy data, the pre-
trained model without Jitter performed the worst, confirming its
role in mitigating noise.

While using the four augmentations generally improves per-
formance, applying all of them is not always optimal. In syn-
thetic datasets except rotated, eliminating Hue resulted in better
performance than utilizing all. This occurs because our frame-
work randomly selects an augmentation, and adding more aug-
mentations reduces the likelihood of applying those that are more
critical for a given dataset. The effectiveness of an augmentation
depends on the key features that must be preserved or learned.
Therefore, while IMG2IMU provides a general pool of four aug-
mentations, selecting relevant ones or incorporating additional
augmentations when the dataset has distinct characteristics (e.g.,
extensive missing data or frequent rotations) is critical.

To summarize, we validated that TranslateX, PermuteX, Hue,
and Jitter serve as sensor-aware augmentations that align with
general sensory properties [54]. More importantly, our findings
highlight that augmentation selection should be dataset-specific.
By understanding the correlation between augmentation types
and sensor variations, developers can fine-tune augmentation
strategies to maximize performance.

C. Fine-Tuning to IMU Sensing Tasks

Reflecting the scarcity of sensor data, our problem setting
assumes only a few samples are available for fine-tuning. We
follow a typical fine-tuning setup; the model trained on the public
image dataset is fine-tuned on a small subset of data from each
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downstream sensing task. As shown in Fig. 4, the data from
downstream tasks, which are from IMU sensing applications,
are represented as spectrograms. We adopt a popular linear eval-
uation protocol, freezing the backbone networks and training a
fully connected layer as the linear classifier at the end of the
backbone network.

V. EVALUATION

A. Experimental Setup

1) Datasets: IMG2IMU utilizes image datasets to pre-train
representations for downstream sensing tasks. We employed
ImageNet [8], a widely known image dataset with 1.28 M
samples. For comparison, we used the Capture-24 [13] dataset
for pre-training for sensor-based baselines. Capture-24 com-
prises accelerometer data collected from wrist-worn devices
of 151 participants. It comprehensively tracks daily activities,
encompassing 4,000 hours of data sampled at 100 Hz.

We assessed the effectiveness of the pre-trained models
through their application to four different IMU sensing tasks,
all utilizing triaxial accelerometer data for classification. To
thoroughly investigate the generalizability, we chose datasets
based on the diversity of subjects, sensor position, and tasks.

WISDM [1] covers human activity recognition tasks. Six
activities of sitting, standing, walking, jogging, walking down-
stairs, and walking upstairs were performed by 36 participants.
Participants carried smartphones in their pockets during the
experiment, where accelerometer data was collected.

Goat Movement [3] contains activity recognition for goats
on farms. Data was collected by six accelerometers attached to
the collar-shaped device worn by five goats. Activities include
stationary, walking, eating, running, and trotting. We omitted
eating as it did not have enough samples.

PVS [2] is designed for roadway classification. Accelerom-
eters were placed on the vehicles, and the data was measured
from three drivers driving three different types of cars. We use
the label information indicating the type of roadway for our main
classification task: asphalt, dirt, and cobblestone.

Daphnet [4] is used to detect the freeze of gait for Parkinson’s
disease patients. A wearable was attached to the ten users (ankle,
leg, and waist), and the acceleration was measured. We use
the data measured from the ankle to differentiate the positional
property from WISDM.

2) Data Preprocessing: All of the images were resized to
128 x 96 pixels. The images were then normalized using Im-
ageNet statistics. The Capture-24 dataset was downsampled
to 5S0Hz. Given the variety of downstream tasks, data from
Capture-24 was segmented into windows of 2, 5, and 10 seconds,
each with a 50% overlap. Separate models were pre-trained
for each window size, and corresponding models were utilized
for downstream tasks requiring different window sizes. The
Capture-24 data was normalized using its statistics.

All downstream sensing data were resampled to 50 Hz. Data
was windowed into 2, 5, or 10 seconds, using sliding windows
with a 50% overlap. The chosen window size matches the
description in the respective dataset’s original publication [1],
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[2], [3], [4]. All sensory data were normalized based on the
statistics of the pre-training source dataset, following a prior
work [12].

Spectrograms were generated from the sensory data. Spec-
trogram generation parameters nfft and noverlap, were treated
as hyperparameters. A grid search was conducted to determine
the optimal hyperparameters, with nfff values {32, 64, 128, 256 }
and noverlap set atnfft minus 2,4, 8, and 16 for each nfft value. As
described in Section IV-A, each spectrogram was concatenated
into a single RGB image. These images were resized to 128 x
96pixels and normalized using the ImageNet data statistics.

Each dataset was randomly divided into training, validation,
and testing sets in a 6:2:2 ratio. The splits were based on
distinct subjects, ensuring that data from the same subject did not
appear in multiple splits. For fine-tuning, we selected very few
samples per class (e.g., 10) to simulate data scarcity, randomly
sampling from the training split. We repeated the experiments
using five different random seeds, creating five independent
train-validation-test splits.

3) Baselines: We compared IMG2IMU against nine base-
lines: four models taking raw (1D) sensory data as input (i.e.,
sensor-based) and five models utilizing 2D-transformed spec-
trograms (i.e., image-based).

For the sensor-based baselines, we selected self-supervised
learning methods designed for human activity recognition
(HAR) [12], [33]. They were pre-trained on the Capture-24
dataset [13], and the pre-trained weights were used for the
downstream tasks that use waveform data as input. The following
are the sensor-based baselines.

Randomly-initialized (1D) model serves as a baseline for
testing weights on 1D waveform data without pre-training.

LIMU-BERT [33] applies BERT-like masked reconstruction,
designed for HAR using 1D sensor data.

SimCLR (HAR) [29] applies contrastive learning, re-
designed for HAR with 1D inputs and sensory augmentations.
Unlike IMG2IMU, it applies sensory augmentations to the raw
sensor data.

Multi-task learning (HAR) [23] is a prevalent self-
supervised learning technique tailored to HAR. It applies dif-
ferent sensory augmentations to create unique prediction tasks,
all processed through a single encoder. By training mutual
information between tasks, the encoder learns generalizable
representation.

Contrastive Predictive Coding (CPC) (HAR) [31] is a
self-supervised learning method that trains models to forecast
embeddings by aggregating past embeddings. This enables the
model to capture the temporal dynamics and adapt to sensory
tasks. We used the latest version, designed for HAR, achieving
the state-of-the-art benchmark performance.

For the image-based baselines, we compared models pre-
trained on the ImageNet [8] dataset, each utilizing unique pre-
training strategies. These were used for downstream tasks with
2D-transformed spectrograms as input.

Randomly-initialized (2D) model serves as a baseline for
testing weights without pre-training, where only the spectro-
grams of the downstream tasks are used for fine-tuning.
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ImageNet-supervised model is pre-trained on ImageNet us-
ing supervised learning and its labels, with the weights trans-
ferred for downstream tasks using spectrograms.

SimSiam [34] represents contrastive learning that bypasses
the need for negative samples with stop-gradient. It showcases
the application of different approaches in contrastive learning.
We used the augmentations provided by the authors.

MoCo [26] is used as a baseline in contrast to the model
using sensor-aware augmentations. This incorporates the default
augmentations provided in MoCo v2: crop and resize, jittering,
horizontal flipping, and Gaussian blurring.

MoCo + All augmentations (2D) [55] uses a wider set of
image augmentations: rotating, sharpening, shearing, adjusting
contrast, brightness, and color, inverting RGB values, polarizing,
posterizing, equalizing, and applying automatic contrast. They
were applied in the MoCo-based pre-training.

As upper bounds, we also set Fully-supervised (1D and 2D)
models by training both sensor- and image-based models using
each dataset’s fully available training data.

4) Training Configurations: We used ResNet18 [56] back-
bone and Adam optimizer. IMG2IMU was implemented upon
MoCo [26] by replacing the augmentations to TranslateX, Per-
muteX, Hue, and Jitter, without cascading.

Pre-training was conducted over 40 epochs, using a learning
rate of 1e~% and a batch size of 256. We used a reduced MoCo
feature dimension of 64 and a queue size of 4,096 to decrease
the computational load. The learning rate started from 1e~® and
increased up to 1le~® for the initial 10 epochs and dropped to
1e~ by the last epoch. During fine-tuning, we loaded the pre-
trained weights and replaced the last layer of ResNetl8 with
a randomly initialized layer. We leveraged a linear evaluation
protocol, aiming to assess the effectiveness of the pre-trained
weights as a feature extractor. Fine-tuning involved only a few
samples (e.g., 10) from each class and was conducted over 50
epochs. A batch size of 4 was used for fine-tuning. We conducted
a grid search for optimal spectrogram generation parameters for
each downstream task (described in Section V-A2).

For sensor-based baselines, except for LIMU-BERT, we
implemented 1D CNNs followed by a fully connected layer,
strictly replicating the network architecture from the prior as-
sessment [12]. For LIMU-BERT, we adopted the transformer-
based structure and training settings from the original pa-
per. For CPC, we replicated the updated version [31], known
for its enhanced performance. All models were pre-trained
on the Capture-24 [13] dataset for 50 epochs. All image-
based baselines were built upon ResNetl8. We maintained
the pre-training configuration of IMG2IMU for MoCo-based
baselines. With SimSiam, we strictly followed the settings in
its official implementation [34]. Pre-training hyperparameters
were optimized via grid search: learning rates from le!,
le 2, le73, le %, le~®, batch sizes from 64, 128, 256 (and
1024, 2048, 4096 for SimCLR, which requires larger batches),
and weight decays from 0, le~3, le~*. The fine-tuning for
all image-based baselines was conducted in the same set-
ting as IMG2IMU. Fine-tuning mirrored the IMG2IMU pro-
tocol, training the only last layer for 50 epochs and maintain-
ing a consistent batch size of 4. Fine-tuning hyperparameters
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were optimized, exploring the same range of values as for
pre-training hyperparameters.

Experiments were repeated using five different random seeds
for robustness. All implementations were conducted using Py-
Torch and eight NVIDIA TITAN Xp GPUs.

5) Metric: The evaluation datasets contain extreme class
imbalances. We use macro-averaged F1-score which is robust
under class imbalance.

B. Performance Analysis

1) Overall Results: We conducted experiments to investigate
the performance of IMG2IMU against the baselines when only
a few labeled data were available. For all pre-trained models,
we used 10 samples per class for fine-tuning. We examined the
performance of the fine-tuned models on the test data of the same
downstream task.

Table II shows the result, where IMG2IMU demonstrates
superior performance over all baselines. When compared to
sensor-based baselines, IMG2IMU achieves a significant im-
provement, surpassing the highest F1-score by 9.8%p. This per-
formance of IMG2IMU is not simply attributed to the adoption
of 2D-transformed inputs, as evidenced by the poor average
F1-score (0.407) of randomly initialized models with 2D inputs
compared with the Fl-score of those with 1D sensory inputs
(0.456). This highlights the efficacy of IMG2IMU’s pre-training,
which yielded a substantial Fl-score increase from 0.407 to
0.675. This is a marked contrast to the modest gain of the
sensor-based pre-training, which increased at most from 0.456 to
0.579. This result indicates that pre-training using Capture-24 is
limited in being applied across downstream tasks involving het-
erogeneous sensor positions, subjects, or task types. In contrast,
IMG2IMU shows that pre-training with the ImageNet dataset—
despite its lack of spectrogram images—enables the model to
interpret visual features within spectrograms, illustrating better
applicability of IMG2IMU in various sensory tasks.

Comparison with image-based baselines shows the effec-
tiveness of IMG2IMU pre-training, as they all use the same
ImageNet dataset. IMG2IMU surpasses ImageNet-supervised
and SimSiam by a margin greater than 7%p. Comparison with
two MoCo-based baselines underscores the impact of augmen-
tations. Despite the default MoCo augmentations achieving the
highest performance for typical vision benchmarks, our findings
indicate that our sensor-aware augmentations are more appropri-
ate for IMU sensing tasks (0.640—0.675). Furthermore, com-
parison with MoCo + All augmentations [55] (0.584—0.675)
suggests that merely increasing the augmentations does not
guarantee enhanced performance.

Additional experiments were conducted by varying the num-
ber of training samples ({1, 2, 5, 10, 20, 50}) per class. Fig. 7
shows that generally IMG2IMU performs better than the base-
lines, especially when training data is limited. Note that we
do not limit the potential of IMG2IMU to be trained solely
with ImageNet. We anticipate using larger datasets such as
LAION-5B would result in greater benefits.

2) Visualizing Semantic Class-Discriminative Heatmaps:
To evaluate whether IMG2IMU effectively captures sensory
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TABLE II
F1-SCORES OF IMG2IMU AND THE FINE-TUNED BASELINES USING 10 SAMPLES PER CLASS

Pre-Training Method WISDM Goat Movement PVS Daphnet Average
Fully-supervised (1D) 0.738 + 0.100 0.864 + 0.020 0.722 + 0.044 0.602 + 0.041 0.731 + 0.110
Sensor-based Randomly-init. (1D) 0.550 + 0.141 0.270 + 0.123 0.585 + 0.065 0.420 =+ 0.058 0.456 + 0.184
methods LIMU-BERT [33] 0.516 + 0.141 0.450 + 0.123 0.526 + 0.065 0.408 + 0.058 0.475 + 0.123
(Pre-trained on  SimCLR (HAR) [29] 0.645 + 0.050 0.585 + 0.061 0.560 + 0.113 0.438 + 0.053 0.557 + 0.124
Capture-24 [13])  Multi-task (HAR) [23] 0.550 + 0.170 0.662 + 0.029 0.583 + 0.051 0.520 + 0073 0.579 + 0.126
CPC (HAR) [31] 0.552 + 0.151 0.650 + 0.112 0.578 + 0.084 0.517 + 0.083 0.574 + 0.165
Fully-supervised (2D) 0.808 + 0.097 0.855 + 0.024 0.716 + 0.066 0.609 + 0.067 0.747 + 0.116
Image-based Randomly-init. (2D) 0.374 + 0.105 0.314 + 0.055 0.483 +0.118 0.456 + 0.09 0.407 £ 0.115
methods Ir_naggNet-supervised 0.620 =+ 0.043 0.756 + 0.051 0.535 £ 0.069 0.499 =+ o.101 0.603 + 0.111
(Pre-trained on SimSiam [34] 0.613 + 0.099 0.798 + 0.093 0.518 + 0.045 0.465 + 0.058 0.598 +0.143
ImageNet [8]) MoCo [26] 0.689 + 0.023 0.801 + 0.057 0.569 + 0.062 0.502 + 0.097 0.640 + 0.119
MoCo + All aug. [55] 0.627 + 0.035 0.756 + 0.061 0.470 + 0.071 0.484 + 0.093 0.584 + 0.123
IMG2IMU (ours) 0.739 + 0.038 0.821 + 0.024 0.594 + 0.053 0.547 + 0.085 0.675 + 0.114

Sensor-based baselines were pre-trained on capture-24 [13], while image-based baselines were pre-trained on imagenet [8]. Encoders were frozen during fine-tuning, with only the last layer trained. Highest

F1-scores are in bold fonts except for the fully-supervised baselines.
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Fig. 7.

information, we examined the similarity between representa-
tions learned from images and those learned under full super-
vision with sufficient sensor data. We used Grad-CAM [57]
to visualize feature interpretations of the pre-trained models.
By tracking gradient flows in convolutional layers, Grad-CAM
generates a class-discriminative localization map that highlights
influential regions in images contributing to the target concept
prediction. We compared IMG2IMU with the Fully-supervised
(2D) baseline, which is trained on the full sensory dataset
and outperforms other few-shot baselines. Additionally, we set
a Randomly-initialized (2D) model as a baseline to show
the default heatmap from an image-based model without any
pre-trained information. We kept the convolutional layers of
IMG2IMU frozen to preserve the pre-trained weights.

Fig. 8 depicts the Grad-CAM heatmaps using the WISDM [1]
dataset. A random sample was selected from each class.
IMG2IMU and Fully-supervised (2D) models highlight similar
regions in the spectrograms across all activity classes. Overall,
the low-frequency band is emphasized in the spectrograms.
Activities with longer durations, such as walking and jog-
ging, exhibit a broad range of highlighted temporal features,
while shorter-duration activities, like going upstairs and down-
stairs, show a narrower range of emphasized features. Although
IMG2IMU is trained solely on a public image dataset, the
Grad-CAM results suggest that it correctly interprets sensor data,
closely aligning with the fully supervised model.
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Performance of the baselines and IMG2IMU using n training samples where the number of training samples is n € {1, 2,5, 10, 20, 50}.

IMG2IMU

Original Randomly-init.

Fully-supervised

Jogging Downstairs

Upstairs ~ Standing Sitting

Walking

4ma

Fig. 8. Grad-CAM comparison on WISDM [1] dataset among Randomly-
initialized (2D), Fully-supervised (2D), and IMG2IMU models. The highlighted
areas in red indicate the part on which the model focused.

C. Performance on Vision Transformers

To further investigate the impact of scaling the encoder back-
bone, we conducted experiments using Vision Transformers
(ViT) [58]. We examined ViT-S (22 M) and ViT-B (84 M), ex-
tending beyond ResNet-18’s 11 M parameters. For baselines, we
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Fig. 9. Performance comparison of IMG2IMU and baseline models using
ViT-S and ViT-B as backbone encoders.

TABLE III
ON-DEVICE COMPUTATIONAL OVERHEAD OF IMG2IMU ON THREE
COMMODITY SMARTPHONES

Inference

Time CPU

26.47 143 189
Galaxy S22 Ultra  48.72 120 11 16.5 105 174
Pixel 2 XL 88.86 108 13 40.67 133 156

Execution time (ms), CPU usage (%), and memory utilization (MB) are measured for spectrogram
generation (visualize) and model inference (inference).

Visualize
Time CPU
55.33 116 11

Device Mem Mem

Galaxy S20 Ultra

adopted MoCo v3 [59], the latest version of MoCo optimized for
ViT architectures. We evaluated two MoCo v3 variants: MoCo
v3 (default) with the augmentation set from the original paper
and MoCo v3 + All augmentations, which leverages a broader
range of augmentations [55]. Additionally, we included Masked
Autoencoder (MAE) [60], a widely adopted self-supervised
learning approach designed for ViT-based models. Finally, we
applied IMG2IMU augmentations to MoCo v3 and evaluated all
models on the WISDM [1] dataset.

Fig. 9 presents the results. On both ViT-S and ViT-B,
IMG2IMU achieved the best performance across all baselines.
On ViT-S, MAE exhibited comparable results to IMG2IMU,
while on ViT-B, IMG2IMU outperformed MAE. Both ViT
variants benefited from IMG2IMU augmentations, consistently
improving over the baseline augmentations. These results align
with our findings on ResNet-18, demonstrating the effectiveness
of IMG2IMU across different architectures.

D. On-Device Computational Overhead

We consider an on-device deployment scenario where we
evaluate IMG2IMU’s real-time operation capabilities. We as-
sume that pre-training and fine-tuning are completed with a
powerful server, after which the model is deployed to a device.
Consequently, our focus is on evaluating the overhead associated
with on-device inference.

Our framework incurs overhead from the transformation into
spectrograms and the use of 2D network architecture. To quan-
tify the overhead, we implemented the IMG2IMU inference
framework on smartphones using the PyTorch Android library.
We evaluated three commodity smartphones running the fine-
tuned IMG2IMU on the WISDM dataset: Galaxy S20 Ultra
(8-core CPU, 12 GB RAM), Galaxy S22 Ultra (8-core CPU,
12 GB RAM), and Pixel 2 XL (8-core CPU, 4 GB RAM).
Overhead was measured in average execution time (ms), CPU
usage (%), and memory utilization (MB) over ten experiments.

Table III presents the computational overhead measured on-
device. Overall, the framework’s end-to-end computation time
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was under 0.15 seconds, demonstrating that IMG2IMU incurs
negligible overhead for real-time on-device inference. Across all
smartphones, spectrogram generation required less than 13 MB
of memory and 120% CPU, while 2D inference used up to
189 MB of memory and 143% CPU, confirming its feasibility
for on-device deployment on smartphones.

VI. DISCUSSION AND LIMITATIONS
A. Adaptability to Non-Triaxial IMU Setups

IMG2IMU is designed for triaxial IMU data. Our design
aligns with the common nature of motion sensors that generate
data to represent physical movement in three dimensions [16],
[17], [18]. By focusing on triaxial data, we take advantage of its
correspondence to the structure of images, where the three axes
map to the RGB channels. This alignment allows IMG2IMU
to leverage pre-trained vision models optimized for capturing
relationships between the color channels. To fully capitalize on
the color relationships inherent in images, we introduced the
Hue augmentation.

However, there are non-triaxial IMU setups, such as single-
axis sensors or setups with more than three channels (e.g.,
combined accelerometer and gyroscope data). In these cases,
IMG2IMU can be adapted through the following strategies:

Single-Axis: for setups that provide single axis or aggregated
motion, we can leverage IMG2IMU by removing the channel-
wise augmentation (Hue), while retaining spatial augmentations
(TranslateX, PermuteX, and Jitter). These augmentations remain
effective for capturing the temporal and positional patterns even
in uniaxial data.

Multi-Axis: for setups with more than three axes (e.g.,
accelerometer-gyroscope), we propose a modality-specific em-
bedding fusion approach. Separate encoders are trained for
each triaxial modality (e.g., one for accelerometer and another
for gyroscope), enabling the model to capture intra-modality
features. The embeddings are then concatenated and passed
through shared projection layers, allowing the system to learn
inter-modality relationships. This approach enables IMG2IMU
to adapt to multi-axis configurations while preserving both intra-
and inter-modality features. Note that our millisecond-level
computation ensures minimal overhead for the fusion process,
making it feasible for multi-modal tasks.

B. Potential for Exploring Sensor-Aware Augmentations

The selection of augmentation types in contrastive learn-
ing strongly impacts the performance of downstream tasks.
IMG2IMU defines four augmentations that benefit contrastive
learning for IMU sensing tasks. This augmentation design was
derived from the key invariants in sensing applications, referring
to the widely accepted sensor data augmentations [54]. While
we also attempted other types of image augmentation, such
as Brightness and Contrast, they did not show clear correla-
tions. Nevertheless, as there are numerous invariants in sensor
data, there could be other augmentations useful for sensing
applications. More augmentations could be built upon and

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on October 29,2025 at 07:56:22 UTC from IEEE Xplore. Restrictions apply.



8666

potentially further improve the pre-trained model’s performance
with IMG2IMU.

C. Optimizing 2D Transformation Process of Sensor Data

To apply the knowledge learned from images, we transform
the IMU sensor data into spectrograms. While our results show
that spectrogram conversion benefits diverse sensing tasks when
combined with IMG2IMU, its effectiveness relies on parameters
used in its generation. For instance, spectrograms may fail to
capture key features if the nfft parameter is set inappropriately.
We found that using nfft=128 on the WISDM dataset achieved
the highest 0.739 Fl-score, but reducing nfft to 64 slightly
decreased performance to 0.734, and further reducing it to 32
led to a drop to 0.660. These results indicate that IMG2IMU’s
performance is sensitive to the visualization, showing the im-
portance of hyperparameter selection.

To mitigate this sensitivity, future work could explore adaptive
spectrogram configurations, dynamically performing optimal
visualization based on data characteristics. Additionally, pre-
vious research has demonstrated that alternative 2D represen-
tations [17] can be highly effective for sensor-based classifica-
tion. These representations could be integrated into IMG2IMU
by designing augmentation strategies tailored to their specific
properties, further enhancing robustness.

VII. CONCLUSION

We presented IMG2IMU that utilizes the learned represen-
tation from images to IMU sensing tasks. We proposed a new
contrastive learning method that employs image augmentations
explicitly designed for sensing applications and correlates each
augmentation type with sensory properties. Our evaluations
demonstrated that IMG2IMU improves performance on a variety
of IMU sensing applications when fine-tuned to the learned rep-
resentations. IMG2IMU showcased how vision knowledge can
be effectively translated to IMU sensing tasks and is beneficial
for IMU sensing applications that lack large-scale training data.
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